Discriminative analysis of non-linear brain connectivity in schizophrenia: an fMRI Study

نویسندگان

  • Longfei Su
  • Lubin Wang
  • Hui Shen
  • Guiyu Feng
  • Dewen Hu
چکیده

BACKGROUND Dysfunctional integration of distributed brain networks is believed to be the cause of schizophrenia, and resting-state functional connectivity analyses of schizophrenia have attracted considerable attention in recent years. Unfortunately, existing functional connectivity analyses of schizophrenia have been mostly limited to linear associations. OBJECTIVE The objective of the present study is to evaluate the discriminative power of non-linear functional connectivity and identify its changes in schizophrenia. METHOD A novel measure utilizing the extended maximal information coefficient was introduced to construct non-linear functional connectivity. In conjunction with multivariate pattern analysis, the new functional connectivity successfully discriminated schizophrenic patients from healthy controls with relative higher accuracy rate than the linear measure. RESULT We found that the strength of the identified non-linear functional connections involved in the classification increased in patients with schizophrenia, which was opposed to its linear counterpart. Further functional network analysis revealed that the changes of the non-linear and linear connectivity have similar but not completely the same spatial distribution in human brain. CONCLUSION The classification results suggest that the non-linear functional connectivity provided useful discriminative power in diagnosis of schizophrenia, and the inverse but similar spatial distributed changes between the non-linear and linear measure may indicate the underlying compensatory mechanism and the complex neuronal synchronization underlying the symptom of schizophrenia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminant analysis of functional connectivity patterns on Grassmann manifold

The functional brain networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive function and brain disorders. Rather than analyzing each network encoded by a spatial independent component separately, we propose a novel algorithm for discriminant analysis of functional brain networks jointly at an ind...

متن کامل

طبقه‌بندی بیماری پارکینسون بر مبنای شاخص‌های درون-ناحیه‌ای و بین-ناحیه‌ای شبکه حرکتی مغز با استفاده از دادگان fMRI حالت استراحت

Parkinson’s disease (PD) is a progressive neurological disorder characterized by tremor, rigidity, and slowness of movement. Recent studies on investigation of the brain function show that there are spontaneous fluctuations between regions at rest as resting state network affected in various disorders. In this paper, we used amplitude of low frequency fluctuation (ALFF) for the study of intra-r...

متن کامل

Discriminant analysis of resting-state functional connectivity patterns on the Grassmann manifold

The functional networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive functions and neurological diseases. In this paper, we propose a novel algorithm for discriminant analysis of functional networks encoded by spatial independent components. The functional networks of each individual are used as...

متن کامل

Can Evolutionary-based Brain Map Be Used as a Complementary Diagnostic Tool with fMRI, CT and PET for Schizophrenic Patients?

Objective: In this research, a new approach termed as “evolutionary-based brain map” is presented as a diagnostic tool to classify schizophrenic and control subjects by distinguishing their electroencephalogram (EEG) features.Methods: Particle swarm optimization (PSO) is employed to find discriminative frequency bands from different EEG channels. By deploying the energy of those selected fr...

متن کامل

Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data

Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013